If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5^2+b^2=29^2
We move all terms to the left:
5^2+b^2-(29^2)=0
We add all the numbers together, and all the variables
b^2-816=0
a = 1; b = 0; c = -816;
Δ = b2-4ac
Δ = 02-4·1·(-816)
Δ = 3264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3264}=\sqrt{64*51}=\sqrt{64}*\sqrt{51}=8\sqrt{51}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{51}}{2*1}=\frac{0-8\sqrt{51}}{2} =-\frac{8\sqrt{51}}{2} =-4\sqrt{51} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{51}}{2*1}=\frac{0+8\sqrt{51}}{2} =\frac{8\sqrt{51}}{2} =4\sqrt{51} $
| x+52=16 | | (2x-20)=(x+4) | | 82=2y+22 | | -x+6=4x+21 | | -15k+10=-2k-14 | | 1+7x+5x=13 | | -7(5-2x)=21 | | x-280=520 | | 1/10g=12g | | 82=z2 | | 7x+2=-3x+42 | | 13+3j=46 | | 16-2.4a=-8 | | 12r=4 | | X+2+2x-400=180 | | x+128+90=90 | | (x+4)+(9x-54)=180 | | 46=8x-36 | | 12/3.1=2.4/b | | -5x-6=6x+3 | | -3.6m-1.07=21.95 | | 180=8x+x | | 9x+16=27 | | a+6-2a=-2 | | -6(3-4x)+2=8(x+11) | | 1/6x-4=x-12 | | 12j+15=-20+10j | | 8(h-88)=48 | | 14x+35=14(x+5) | | 9(m+7)=81 | | 3x-8=7(-3x+16) | | s+10/7=4 |